260 research outputs found

    Trident: A three-pronged galaxy survey. I. Lyman alpha emitting galaxies at z~2 in GOODS North

    Full text link
    Context. Lyman alpha emitting galaxies (LAEs) are used to probe the distant universe and are therefore important for galaxy evolution studies and for providing clues to the nature of the epoch of reionization, but the exact circumstances under which Lyman alpha escapes a galaxy are still not fully understood. Aims. The Trident project is designed to simultaneously examine Lyman alpha, H-alpha and Lyman Continuum emission from galaxies at redshift z~2, thus linking together these three aspects of ionising radiation in galaxies. In this paper, we outline the strategy of this project and examine the properties of LAEs in the GOODS North field. Methods. We performed a narrowband LAE survey in GOODS North using existing and two custom made filters at the Nordic Optical Telescope with MOSCA. We use complementary broad band archival data in the field to make a careful candidate selection and perform optical to near-IR SED fitting. We also estimate far-infrared luminosities by matching our candidates to detections in Spitzer/MIPS 24{\mu}m and Herschel/PACS catalogs. Results. We find a total of 25 LAE candidates, probing mainly the bright end of the LAE luminosity function with L_Ly {\alpha} ~ 1-15e42 erg/s. They display a range of masses of ~0.5-50e9 M_solar, and average ages from a few tens of Myr to 1 Gyr when assuming a constant star formation history. The majority of our candidates also show signs of recent elevated star formation. Three candidates have counterparts in the GOODS-Herschel far-IR catalogue, with luminosities consistent with ultra-luminous infrared galaxies (ULIRGs). Conclusions. The wide range of parameters derived from our SED fitting, as well as part of our sample being detected as ULIRGs, seems to indicate that at these Lyman alpha luminosities, LAEs do not necessarily have to be young dwarfs, and that a lack of dust is not required for Lyman alpha to escape.Comment: 16 pages, 12 figures. Accepted version for publication in A&

    Dynamics of blue compact galaxies, as revealed by their H-alpha velocity fields I. The data, velocity fields and rotation curves

    Full text link
    Observations of six luminous blue compact galaxies (BCGs) and two star forming companion galaxies were carried out with the CIGALE scanning Fabry-Perot interferometer attached to the ESO 3.6m telescope on La Silla. The observations were made in the H-alpha emission line which is prominent in BCGs. A velocity sampling of 5 km/s and a pixel size of 0.9 arcseconds were used. In this paper we present the observations and the data together with the velocity fields and the derived rotation curves. In addition we provide rough estimates of the total dynamical mass and of the ionised gas mass for each galaxy. All galaxies display rotation, but while the companion galaxies have regular velocity fields, those of the BCGs are complex and appear perturbed. This is the most extensive study to date of the optical velocity fields of BCGs. The interpretation of these results will be presented in a forthcoming paper (Paper II).Comment: 26 pages, 14 figures. Accepted for publication in A&AS. The paper (with figures in slightly higher resolution) and an electronic table is also available at ftp://ftp.iap.fr/pub/from_users/ostlin/Articles/ . Replaced version, figure captions fixe

    VLT/MUSE view of the highly ionized outflow cones in the nearby starburst ESO338-IG04

    Full text link
    The Lyα\alpha line is an important diagnostic for star formation at high redshift, but interpreting its flux and line profile is difficult because of the resonance nature of Lyα\alpha. Trends between the escape of Lyα\alpha photons and dust and properties of the interstellar medium (ISM) have been found, but detailed comparisons between Lyα\alpha emission and the properties of the gas in local high-redshift analogs are vital for understanding the relation between Lyα\alpha emission and galaxy properties. For the first time, we can directly infer the properties of the ionized gas at the same location and similar spatial scales of the extended Lyα\alpha halo around ESO 338-IG04. We obtained VLT/MUSE integral field spectra. We used ionization parameter mapping of the [SII]/[OIII] line ratio and the kinematics of Hα\alpha to study the ionization state and kinematics of the ISM of ESO338-IG04. The velocity map reveals two outflows. The entire central area of the galaxy is highly ionized by photons leaking from the HII regions around the youngest star clusters. Three highly ionized cones have been identified, of which one is associated with an outflow. We propose a scenario where the outflows are created by mechanical feedback of the older clusters, while the highly ionized gas is caused by the hard ionizing photons emitted by the youngest clusters. A comparison with the Lyα\alpha map shows that the (approximately bipolar) asymmetries observed in the Lyα\alpha emission are consistent with the base of the outflows detected in Hα\alpha. No clear correlation with the ionization cones is found. The mechanical and ionization feedback of star clusters significantly changes the state of the ISM by creating ionized cones and outflows. The comparison with Lyα\alpha suggests that especially the outflows could facilitate the escape of Lyα\alpha photons [Abridged].Comment: Accepted for publication in A&A Letters, 4 pages, 2 figure

    The starburst phenomenon from the optical/near-IR perspective

    Full text link
    The optical/near-IR stellar continuum carries unique information about the stellar population in a galaxy, its mass function and star-formation history. Star-forming regions display rich emission-line spectra from which we can derive the dust and gas distribution, map velocity fields, metallicities and young massive stars and locate shocks and stellar winds. All this information is very useful in the dissection of the starburst phenomenon. We discuss a few of the advantages and limitations of observations in the optical/near-IR region and focus on some results. Special attention is given to the role of interactions and mergers and observations of the relatively dust-free starburst dwarfs. In the future we expect new and refined diagnostic tools to provide us with more detailed information about the IMF, strength and duration of the burst and its triggering mechanisms.Comment: 6 pages, 3 figures, to appear in "Starbursts: from 30 Doradus to Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado (Kluwer

    Super star cluster feedback driving ionization, shocks and outflows in the halo of the nearby starburst ESO 338-IG04

    Full text link
    Stellar feedback strongly affects the interstellar medium (ISM) of galaxies. Stellar feedback in the first galaxies likely plays a major role in enabling the escape of LyC photons, which contribute to the re-ionization of the Universe. Nearby starburst galaxies serve as local analogues allowing for a spatially resolved assessment of the feedback processes in these galaxies. We characterize the feedback effects from the star clusters in the local high-redshift analogue ESO 338-IG04 on the ISM and compare the results with the properties of the most massive clusters. We use high quality VLT/MUSE optical integral field data to derive the physical properties of the ISM such as ionization, density, shocks, and perform new fitting of the spectral energy distributions of the brightest clusters in ESO 338-IG04 from HST imaging. ESO 338-IG04 has a large ionized halo which we detect to a distance of 9 kpc. We identify 4 Wolf-Rayet (WR) clusters based on the blue and red WR bump. We follow previously identified ionization cones and find that the ionization of the halo increases with distance. Analysis of the galaxy kinematics shows two complex outflows driven by the numerous young clusters in the galaxy. We find a ring of shocked emission traced by an enhanced [OI]/Hα\alpha ratio surrounding the starburst and at the end of the outflow. Finally we detect nitrogen enriched gas associated with the outflow, likely caused by the WR stars in the massive star clusters. Photo-ionization dominates the central starburst and sets the ionization structure of the entire halo, resulting in a density bounded halo, facilitating the escape of LyC photons. Outside the central starburst, shocks triggered by an expanding super bubble become important. The shocks at the end of the outflow suggest interaction between the hot outflowing material and the more quiescent halo gas.Comment: Accepted for publication in Astronomy and Astrophysics, 22 pages, 15 figure

    The massive star clusters in the dwarf merger ESO 185−IG13: is the red excess ubiquitous in starbursts?

    Get PDF
    We have investigated the starburst properties of the luminous blue compact galaxy ESO 185−IG13. The galaxy has been imaged with the high-resolution cameras onboard the Hubble Space Telescope. From the ultraviolet (UV) to the infrared (IR), the data reveal a system shaped by hundreds of young star clusters, and fine structures, like a tidal stream and a shell. The presence of numerous clusters and the perturbed morphology indicate that the galaxy has been involved in a recent merger event. Using previous simulations of shell formation in galaxy mergers we constrain potential progenitors of ESO 185−IG13. The analysis of the star cluster population is used to investigate the properties of the present starburst and to date the final merger event, which has produced hundreds of clusters younger than 100 Myr. We have found a peak of cluster formation only 3.5 Myr old. A large fraction of these clusters will not survive after 10-20 Myr due to the ‘infant mortality' caused by gas expulsion. However, this sample of clusters represents a unique chance to investigate the youngest phases of cluster evolution. As already observed in the analogue blue compact galaxy Haro 11, a fraction of young clusters are affected by a flux excess at wavelengths longer than 8000 Å. Ages, masses and extinctions of clusters with this near-IR (NIR) excess are estimated from UV and optical data. We discuss similarities and differences of the observed NIR excess in ESO 185−IG13 clusters with other cases in the literature. The cluster ages and masses are used to distinguish among the potential causes of the excess. We observe, as in Haro 11, that the use of the IR and the (commonly used) I band data results in overestimates of age and mass in clusters affected by the NIR excess. This has important implications for a number of related studies of star cluster

    MUSE Illuminates Channels for Lyman Continuum Escape in the Halo of SBS 0335-52E

    Full text link
    We report on the discovery of ionised gas filaments in the circum-galactic halo of the extremely metal-poor compact starburst SBS 0335-052E in a 1.5h integration with the MUSE integral-field spectrograph. We detect these features in Hα{\alpha} and [OIII] emission down to surface-brightness levels of 5×10−195 \times 10^{-19}erg s−1^{-1}cm−2^{-2}arcsec−2^{-2}. The filaments have projected diameters of 2.1 kpc and extend more than 9 kpc to the north and north-west from the main stellar body. We also detect extended nebular HeII λ\lambda4686 emission that brightens towards the north-west at the rim of a star-burst driven super-shell, suggestive of a locally enhanced UV radiation field due to shocks. We also present a velocity field of the ionised gas. The filaments appear to connect seamlessly in velocity space to the kinematical disturbances caused by the shell. Similar to high-zz star-forming galaxies, the ionised gas in this galaxy is dispersion dominated. We argue that the filaments were created via feedback from the starburst and that these ionised structures in the halo may act as escape channels for Lyman continuum radiation in this gas-rich system.Comment: Revised version after peer review. Accepted for publication in A&A letter

    Neutral gas in Lyman-alpha emitting galaxies Haro 11 and ESO 338-IG04 measured through sodium absorption

    Full text link
    Context. The Lyman alpha emission line of galaxies is an important tool for finding galaxies at high redshift, and thus probe the structure of the early universe. However, the resonance nature of the line and its sensitivity to dust and neutral gas is still not fully understood. Aims. We present measurements of the velocity, covering fraction and optical depth of neutral gas in front of two well known local blue compact galaxies that show Lyman alpha in emission: ESO 338-IG 04 and Haro 11. We thus test observationally the hypothesis that Lyman alpha can escape through neutral gas by being Doppler shifted out of resonance. Methods. We present integral field spectroscopy from the GIRAFFE/Argus spectrograph at VLT/FLAMES in Paranal, Chile. The excellent wavelength resolution allows us to accurately measure the velocity of the ionized and neutral gas through the H-alpha emission and Na D absorption, which traces the ionized medium and cold interstellar gas, respectively. We also present independent measurements with the VLT/X-shooter spectrograph which confirm our results. Results. For ESO 338-IG04, we measure no significant shift of neutral gas. The best fit velocity is -15 (16) km/s. For Haro 11, we see an outflow from knot B at 44 (13) km/s and infalling gas towards knot C with 32 (12) km/s. Based on the relative strength of the Na D absorption lines, we estimate low covering fractions of neutral gas (down to 10%) in all three cases. Conclusions. The Na D absorption likely occurs in dense clumps with higher column densities than where the bulk of the Ly-alpha scattering takes place. Still, we find no strong correlation between outflowing neutral gas and a high Lyman alpha escape fraction. The Lyman alpha photons from these two galaxies are therefore likely escaping due to a low column density and/or covering fraction.Comment: 9 pages, 3 figure
    • …
    corecore